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S - EN —>
1.0 Framework: p - q(E+ v x B)

Lie Series

* A.J. Dragt, F. Neri, and G. Rangarajan “Lie Algebraic Treatment of Linear and
Nonlinear Beam Dynamics” Ann. Rev. Nucl. Part. Sci. vol. 38, pp. 455-496
(1988).

* A.J. Dragt and J.M. Finn “Lie Series and Invariant Functions for Analytic
Symplectic Maps” J. Math. Phys. Vol 17, No. 12, pp. 2215-2227 (1976).

 W. Grobner “Die Lie-Reihen und ihre Anwendungen” (VEB Deutscher Verlag
der Wissenschaften, 1960).
Truncated Power Series

M. Berz “The Method of Power Series Tracking for the Mathematical Descrip-
tion of Beam Dynamics” Nucl. Instr. Meth. vol. A258 pp. 431-436 (1987).

* D.E. Knuth “The Art of Computer Programming” vol 2. (Addison-Wesley,
1973).
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Symplectic Integrator

 E. Forest and “The Correct Local Description for Tracking in Rings” Part.
Accel. vol. 45, pp. 65-94 (1994).

* H. Yoshida “Construction of Higher Order Symplectic Integrators” Phys.
Lett. A 150, pp. 262-268 (1990).

e E. Forest and R.D. Ruth “Fourth-Order Symplectic Integration”, Physica D
43, pp. 105-117 (1990).

Map Normal Form

e E. Forest “A Hamiltonian-Free Description of Single Particle Dynamics for
Hopelessly Complex Systems” J. Math. Phys. vol. 31, no 5, pp. 1133-1144
(1990).

e A. Bazzani, P. Mazzanti, G. Servizi, and G. Turchetti “Normal Forms for Hamil-
tonian Maps and Nonlinear Effects in a Particle Accelerator” Nuovo Cimento,
vol. B 102, pp. 51-80 (1988).

 E. Forest, M. Berz, and J. Irwin “Normal Form Methods for Complicated Peri-
odic Systems: a Complete Solution Using Differential Algebra and Lie Opera-
tors” Part. Accel. vol. 24, pp. 91-107 (1989).
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Radiation

* K. Ohmi, K. Hirata, and K. Oide “From the Beam Envelope Matrix to Synchro-
tron Radiation Integrals” Phys. Rev. E, vol. 49, no. 1, pp. 751-765 (1994).

e E. Forest and K. Hirata “A Contemporary Guide to Beam Dynamics” KEK
Report 92-12.

» K. Hirata and F. Ruggiero “Treatment of Radiation for Multiparticle Tracking
in Electron Storage Rings” Part. Accel. vol. 28, pp. 137-142 (1990).

* A.W. Chao “Evaluation of Beam Distribution Parameters in an Electron Stor-
age Ring” J. Appl. Phys. vol. 50, No. 2, pp. 595-598 (1979).
Polymorphism

e E. Forest, F. Schmidt, and E. Mcintosh “Introduction to the Polymorphic
Tracking Code” CERN-SL 2002-044 (AP), KEK Report 2002-03.

* J. Bengtsson and E. Forest “A Polymorphic Beam Dynamics Class” CBP,
LBNL, 1994, unpubl.
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Accelerator Design

* D.H. Bilderback, P. Elleaume, and E. Weckert “Review of Third and Next Gen-
eration Synchrotron Light Sources” J. Phys. B Mol. Opt. Phys, vol. 38, pp.
773-797 (2005).

» S. Smith “Optimization of Modern Light Source Lattices” EPACO02.

* J. Bengtsson “The Sextupole Scheme for the Swiss Light Source (SLS): An
Analytic Approach” SLS Note 9/97.

* J. Bengtsson and J. Irwin “Analytical Calculations of Smear and Tune Shift”
SSC-232 (1990).
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Control Theory

* J. Bengtsson, D. Briggs, and G. Portmann “A Linear Control Theory Analysis
of Transverse Coherent Bunch Instabilities Feedback Systems (The Control
Theory Approach to Hill’s Equation)” CBP Tech Note-026, PEP-ll AP Note 28-
93.

e E. Onillon and J.M. Brennan “Improvement of the AGS AGC Loop” AGS/AD/
Tech. Note No. 394 (1994).

* D. Boussard and E. Onillon “Application of the Methods of Optimum Control
Theory to the RF System of a Circular Accelerator” CERN SL/93-09 (RFS).
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Accelerator Control

 R. Thomas, M. Bai, R. Calaga, and W. Fischer “Measurement of Global and
Local Resonance Terms” Phys. Rev. ST Accel. Beams 8, 024001 (2005).

e J. Safranek, G. Portmann, and A. Terebilo “MATLAB-Based LOCO” EPACO03.

* D. Robin, C. Steier, J. Laskar, and L. Nadolski “Global Dynamics of the
Advanced Light Source Revealed through Experimental Frequency Map
Analysis” Phys. Lett. A vol. 85, no. 3, pp. 558-561 (2000).

 J. Safranek “Experimental Determination of Storage Ring Optics Using Orbit
Response Measurements” Nucl. Instr. Meth. vol. A388 pp. 27-36 (1997).

* R. Bartolini and F. Schmidt “Normal Form via Tracking or Beam Data” Part.
Accel. 59, pp. 93-106 (1998).

* J. Bengtsson and M. Meddahi “Modeling of Beam Dynamics and Comparison
with Measurements for the Advance Light Source (ALS)” EPAC94.

* J. Bengtsson and E. Forest “Global Matching of the Normalized Ring” (1991).

e J. Laskar “The Chaotic Motion of the Solar System. A Numerical Estimate of
the Size of the Chaotic Zones” 88 pp. 266-2971 (1990).

9 of 51



2.0 Overview

2.1 Lattice Design for Synchrotron Light Sources

Challenge (D. H. Bilderbak, P. Elleaume, and Edgar Weckert, 2005):

“One of the most important design challenges of such a lattice involves the
enlargement of the dynamic aperture in order to reach a value sufficient for
injection.”

Given a Hamiltonian system

H=H,+cV

Approach: Analyze the properties of the corresponding Poincaré map.
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Lie series approach (Dragt and Finn, 1976):

2n

My ,,=€ e “e e .., :f:gE[f,g]EZ[
i=1

of og 0g afJ
OXjOPyj OXjOPy;

“It also provides a new approach since the connection between symplectic
maps, Lie algebras, invariant functions, and Birkhoff’s work has not been previ-
ously recognized and exploited. It is expected that the results obtained will be
applicable to the normal form problem in Hamiltonian mechanics, the use of the
Poincaré section map in stability analysis, and the behavior of magnetic field
lines in a toroidal plasma device.”

Hamiltonian approach (A. Bazzani, P. Mazzanti, G. Servizi, and G. Turchetti,
1988):

“We describe the motion of a particle in the lattice of a hadron accelerator using
the formalism of symplectic maps. We revisit the Courant-Snyder’s theory and
we stress that the reduction to normal form of a symplectic map is just the natu-
ral generalization of the linear theory.”
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A recursive (arbitrary order) map normal form algorithm (Forest, 1990):

> 3 > > s
o ﬂ_le.—g(J, 6) .e.k(J) e o(J.4) "
M i
Vx,y = _ﬁ aJx y, Bxi+ABxi = (e Rn_)i_/qixi>$, etc.

Problem (Poincaré, 1892): perturbation theory is limited by the “small denomina-
tor problem” from celestial mechanics.

Theorem: Kolmogorov-Arnold-Moser (1954-1963). Roughly, a system with peri-
odic solution has quasi-periodic solutions for sufficiently small «.

Problem (Percival, 1986):

“In fact, Hénon showed Arnold’s proof only applies if the perturbation is less

than 10333 and Moser’s if it is less than 10748, in appropriate units. The latter is
less than the gravitation perturbation of a football in Spain by the motion of a
bacterium in Australia!”
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Theorem: Nekhoroshev. Roughly, the confinement time scales exponentially as
¢ tends to zero.

Problem (Warnock and Ruth, 1991). “Unfortunately, the Nekhoroshev Theorem
has no direct practical application, since ¢ must be absurdly small to guarantee
a stability time T of suitable magnitude. This situation results from pessimistic
estimates that are required in the rigorous analysis.”

Approach: analyze the Lie generator (Bengtsson and Irwin, SSC 1990):

__linear ‘93 2° linear ‘93 3° linear ‘93 n—1° _ linear
f7\/l— ml_)ze 7\42_)39 ...f7\/ln_2_)n_1 n_1_>n
:5}3,2: :5}3,4: 3@73, —1° _ linear 1 thythy+hg+...:
= e e e T g =4 e RA

Problem: Taylor series have a finite radius of convergence, and we still lack a
theorem for stability in the general non-linear case.

Intuitive approach: reduce the magnitude of the Lie generator and evaluate by
numerical simulations of the system of ODEs (tracking).
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Challenge: how to build a self-consistent model that includes the effects of engi-
neering tolerances and radiation?

Solution exists: Forest, Hirata, Chao, et al.

Problem: how to (correctly) implement the entire framework in an effective man-
ner.

Approach (Bengtsson and Forest, 1996): integrate the algorithms for symplectic
integrator-, Truncated Power Series Algebra-, and Map Normal Form with mod-
ern computer programming techniques (a polymorphic beamline class: Thor). In
particular, a successful object-oriented implementation must be guided by the
mathematical structures, not vice-verse.
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2.2 Accelerator Control (Single Particle Dynamics)

Challenge (R. Bartolini and F. Schmidt, 1998):

“Since many years perturbation theory [1] and more recently the Normal Form
[2, 3] techniques have been used to understand nonlinear motion of single parti-
cles in hadron accelerators. This has proven to be very useful in the design
phase of an accelerator. When it comes to existing machines these sophisti-
cated tools have been rarely in use up to now. In part this is due to the complex-
ity of the theory but also due to the fact that a nonlinear model of the accelerator
cannot be easily anticipated. Checking such a model experimentally [4] may
prove even more difficult.

One well documented attempt to overcome this problem has been made by
Bengtsson [5]. In the framework of the first order perturbation theory he has
studied how the real spectra from tracking or experimental turn-by-turn data can
be related to resonances. This study has stopped short of a complete solution.
An important prerequisite to his analysis was a tune measurement technique
superior to the standard FFT [6]. Similar attempts were performed in the field of
celestial mechanics [7].”
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Complimentary approaches:
* Frequency Map Analysis (D. Robin, C. Steier, L. Nadolski, and Laskar, 2000).
* Linear Optics from Closed Orbits (J. Safranek, 1996).
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3.0 Control Theory

Challenge: Given a model for a dynamical system, how to improve the perfor-
mance?

3.1 Classical Control Theory

A linear, time-invariant, single-input/single-output systems (Nyquist, 1932,
Bode, 1940)

R J»@—» h(t) = y(t)

FIGURE 1. Transfer Function (transient behavior).
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3.2 Modern Control Theory

A linear, time-varying system with multiple input/multiple outputs (R. Kalman,

1960)

" ”_(ti x(t) = A(Hx(t) +B(Hu(t), | y(t)

y(t) = C(tu(t)

x(1)

FIGURE 2. State-Space Approach (full-state feedback).

This concept is the theme for the remaining slides.
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Similarly, the corresponding discrete-time system is

Xk+1 = AXy+ Bu,

Yk = Cug

The dynamics of the system is determined by the eigenvalues of A

AN _ TFNT_I

Moreover, the system is controllable and observable if

W, = |B AB|; W, = {cﬂ’ rank(W) = n

For the latter, all the internal states can be estimated from a single output signal

xi = AW VK- +{[BAIB]—AWO{ 0 "H Yk-1
Yk CBO|)| u,
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Summary:

The intrinsic properties of linear systems:
* stability,
e controllability,

e and observability

are determined by purely algebraic properties, i.e.:
* the eigenvalues of the state matrix,
e and certain rank conditions of the state-space matrices.
i.e. a coordinate-free description. In particular, stability is independent of the ini-

tial conditions. This is typically not the case for non-linear systems. -> Numeri-
cal simulations (tracking).
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3.3 Particle Accelerator (Linear) Control Theory

Hill’s equation

x"+K(s)x =0

can be written

px' = _K(S)X9 X = px

with the discrete-time version (Courant and Snyder, 1958)

- - . T
Xk+1 = Mxg, XK= [Xp, Pyyl

The state (transport) matrix

> > >
x1 = M, _, X, X = [X,p,.Y, [ Cot, o

]T

is concatenated by matrix multiplication (Lorentz invariant, symplectic group.)

My_,,=M,_,M,_,
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Generalizing, the driven pseudo-harmonic oscillator

x"+ K(s)x = u(s)

leads to

Xk+1 = Mxy+ Buy,

Yk = Cu

It is straightforward to show that the system is both controllable and observ-
able. Correspondingly, one can:

* Monitor the (linear) phase-space motion with one BPM.

* Design and implement feed-back systems for e.g. coherent bunch instabili-
ties.
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4.0 A “Wind Tunnel” for the System of ODEs

Challenge: How to implement one model for both analytical- and numerical stud-
ies, with a self-consistent treatment of the impact of engineering tolerances and

radiation?

4.1 Equations of Motion

Note, expansions in “time”, i.e. the s-coordinate.

9
Hamiltonian (phase-space: x = [x,p,. Y, Py, 0, CyAt])

2
H=-(1+ href(s)x)L)iOAs(s) + J(l +8)" - (px— piOAx(s)) = (py

q
— 2 A (s
o y

) 2}

A 4th-order symplectic integrator is given by (Forest and Ruth, Yoshida, 1990)

_2(2—2 ) _2(2—2 ) 2-2

+—¢,LH,: :-d,LH,: :—c,LH,. :-d,LH,: :—c¢c,LH,: :—d,LH,: :—c¢,LH: 5
54(L)se 1=at g G (R TgE (T OEME b g iR e (26 d+O(L)’
1 1
Cc. = ; C. = 1-2 ° d. = ; d. = — 2 /3
1 1/3. 2 1/3.° 1 1/3’ 2
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Problem: how to model mechanical mis-alignments?
Solution: introduce an Euclidian transformation before- and after each element.

Problem: how to introduce classical radiation?

Solution: generalize from Poisson bracket :H,: to vector field V, - V .

Problem: How to extract the corresponding Taylor maps to arbitrary order?

Solution: Replace the numerical operations (+,-,*,/) on the phase space vector
with TPSA.

Problem: How to obtain the equilibrium emittance?

Solution: Compute the (complex) eigenvalues of the linear one-turn map and the

diffusion coefficients related to [<x2>, <y2>, <zz>] for the eigenvectors.
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4.2 Truncated Power Series Algebra (TPSA)

Truncated power series

N
P= % ax, I=(iy, iy, ..., 0,), MEII+I2+...+In

=0

. i_ Iy I in
X=(X{, Xy, ..., Xp), X =X{X,y..X,

form an (associative) algebra over the real numbers

(P-Q)-R=P-(Q-R+0(x"*1, (P+Q)-R=P-R+Q-R+0(x" ™1,
P.(Q+R)=P-Q+P-R+O(x""],

a-(P-Q=(a-P)-Q+oux""HY=pP.a-@+0ux"""

Moreover (inverse)

1 2 N N+1
—_— = ]-P+P +. . +tP +
TP / - . O(x )
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FIGURE 3. The Polymorphic Tracking Code: Information Flow
(~50,000 lines of C++, C, and FORTRAN code).
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/* drift */
template<typename T>
void drift pass(const T L, ss_vect<T> &x)

{
T ps, u;

if (!'nl drift on) {
u = L/(1.0+x[delta ]);
x[ct ] += u*(pow(x[px ], 2)+pow(x[py 1, 2))/(2.0*(1.0+x[delta 1))
} else {
ps = get ps(x); u = L/ps; x[ct_] += u*(1.0+x[delta ]) - L;
}
x[x ] += x[px_]*u; x[y_ ] += x[py_]*u;
if (totpath on) x[ct ] += L;
}

FIGURE 4. Polymorphic Propagator for a Drift (C++).
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To summarize, an integrated implementation of the algorithms for:
» symplectic integrator,
* TPSA,

e and the Map Normal Form

by polymorphism (operator overloading) provides a generic tool to compute:
* any global property,
e to arbitrary order,
» with self-consistent modeling of engineering tolerances and radiation;
* and parameter dependence.

In particular, all quantities are computed from the same equations of motion
(Hamiltonian, vector flow) and algorithm for numerical integration.

Problem: since the Map Normal Form approach is fundamentally no different
from classical perturbation theory, the computed global properties and invari-
ants are limited by the “small denominator problem” from celestial mechanics.

Challenge: Lacking a control theory for the general non-linear case, what to do?
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5.0 Dynamic Aperture: a Control Theory Approach

Note, expansions in the multipole strengths.

Challenge: How to control the (linear) chromaticity while maintaining adequate

dynamic aperture?

5.1 Lie Generator Approach

The one-turn map

Xn+1 = MXn

leads to the stability problem

;N = MN;O
The map can be written
_ e:§3’2:e:§3’4:...e:g3’n_1:9\/lllhia;; _ ;1_1 ‘h3+h4+h5+'~’m
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by introducing similarity transformations

s _ * M. g: cqy-
:g: 1 _ linear¥* _ _:Q:
Mlineare Mlinear = e = e

and the CBH formula

:f: :g: :f+g+[f g]l/2+0(3):
eeg=e gt+l[f,g] (3)

In other words:
1. Transform to Floquet space (normalized phase space).
2. Parallel transport all the (thin) nonlinear kicks to the beginning of the lattice.

3. Combine them into a single (thin) nonlinear kick with the CBH formula.
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The stability problem then takes the form

" = ﬂ_l(e

:h3+h4+

N

R) A

To summarize, the dynamic aperture problem has been factored into two parts:

* A non-linear Lie generator (thin kick) h,

» and a phase-space rotation ® (working point).

Intuitive approach:

 Minimize h to bring the map closer to the linear approximation.

* Determine the dynamic aperture from tracking.

e Optimize the tune.

e [terate => robust dynamic aperture and optics design becomes tightly cou-
pled for high performance lattices.

* Include engineering tolerances and radiation.

* Refine.
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The vector potential for a (thin) sextupole at location s; is

b,:
q _ _3i 3 2
pOAs(si) 3 (X —3xy").

Introducing the resonance basis

+ T . :
h, = j2J,e = = J2J cos(d,)+t j2J,sin(0,) = XFip,

and the mode expansion

+j +l —i, i
3_ Z hh 1 3hx 485,
|I|—n

where (can be represented as phasor sums:(Re{h;},Im{ h;}))

N

1 (j+k)/2 (I+m)/2 p l[(.l k)“x1+(l m)Hy,

= Biimp = 7 . B3aLBitn  “Byn T ke :

h Jjkimp

jkimp
=1
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First order generators:

Phenomena Generators
Linear Chromaticity h11001> Poo111
Sextupolar (geometric) Modes h10110: h21000> N30000: M10020: N10200
Chromatic (synchro-betatron) Modes h20001> ho0201
Second Order Dispersion h10002

Table 1: First Order Sextupolar Generators.
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Turning the crank to second order

h. = 1 Z h.h-h +(i1+j1)h —(i2+.i2)h + (i +j3)h —(iy +j4)8(i5+j5),
JaJB - /I J x x y X
XYli=|d=n

at+tpB =2

where (phase independent)

1
= 1321000

1
76 2M21000

1 2
~g24P10110M01110 T 10020701200 T P10200M01020)(2Y))

2
(h-h 30000h03000)(2‘jx)

h-) h
I J Ker

12000 T

+ h h

01110 * 110020101200 T P10200701020)(2J)(2))
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and (drive sextupolar modes)

1
(hih.._l)lm - _-62[2(’1300001112000)2\/)(_'_(

1
+ 512(h3000001110 *

+h

2
h30000121000) 4, 1(2Jx)

h h 2h

10200h10020)2vx

h

2100010110 T

+2(h h +2h +2h

10200h12000
h +h

21000
h

01200
+4h

10200°°01110 10110h01200)2\,y

+(h

210007710020 300007701020 10110h10020)2\,x_2\,y

* (P30000M01200 * P10200721000 * 4P1011010200)5,_+ sz](ZJx)(ZJy)

1

+-EZ[2(h

h h

2
10200701110 * 10110”01200)2Vy+(h10200h01200)4vy](2"y) +c.c.

Notes:

1. Since the second order generators are cross terms of the first order, they
can be controlled by local cancellation of the first order.

2. It is clear that (hth)K drive amplitude dependent tune shifts. However,
er

(hih.})l contribute too, i.e. when the map is brought to normal form.
m
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Generalizing to 3rd order:

* 2nd order brings 8 more geometric modes.

* 3rd order adds another 14 geometric modes.

 And, chromatic (synchro-betatron) modes as well.

e 2nd-, 4th- and 6th order introduces amplitude dependent tune shifts (12),
higher order chromaticity (4), and cross terms (7).

1st Order (5)

(1,0)

(3,0)

(1! '2)

(1,2)

2nd Order (8)

(2, 0)

(0, 2)

(4, 0)

(0, 4)

(25 '2)

(2, 2)

3rd Order (14)

(1,0)

(3, 0)

(1! '2)

(1, 2)

(5, 0)

(1! '4)

(1,4)

(3! '2)

(3, 2)

Table 2: Sextupolar Geometric Modes: (n,v_, nyvy).
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(h-h- :
I J Ker

Order Geometric Generators
2 2
- h22000Yx> 111109y hoo220Y),
4 ha2000d Poot1add., Biqooad >, Bazand:
33000Yx: N221109xJy» M112209xJ)» Moo330J)
4 3 2 2 3 3
6 | hyao00Yys 33110955 N2222095Y)5 N11330Y5Jys Mooasod,,

Table 3: Sextupolar Geometric Generators of Amplitude Dependent Tune Shifts.

Order Chromatic Generators

2 2 3 3
T 1 h11001948; hoo111Jy8, h1100248” 5 hoo112J,8” 5 M11003J0™ s hoo113J0

2 2
z 22001985 h11111J,J 5, hoo221J5

3 2 2 3
4 h22111J458, h22111J,J /8, h11221J,J /5, hoo331J 0

Table 4: Sextupolar Chromatic Generators of Nonlinear Chromaticity.
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5.2 Application to NSLS-II

Approach:

1.

Extract the one-turn map (to 8th order in phase-space coordinates); with
parameter dependence.

. Compute the corresponding Lie generator (to 9th order, i.e. 3rd order in the

sextupole strengths); with parameter dependence.

. The non-linear part of the dynamic aperture problem has now been reduced

to a 52 x 9 system of linear, quadratic, and cubic equations for the sextupole
strengths.

. Determine a merit function with suitable (heuristic) weights by testing the

effect on the dynamic aperture from tracking.

. Optimize the tune: select a grid of working points, adjust the cell tune,

determine the sextupole strengths (by minimizing the 52 x 9 system), and
evaluate the dynamic aperture from tracking.

This is essentially the strategy we developed for the Swiss Light Source concep-
tual design, and pursued analytically to second order (with computer algebra),
by instrumenting the optics code with the corresponding analytical formula.
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Active logbook
Machine Shift Summaries
Entry date Priority Author
22/02/2005 07:00 N Andreas Luedeke
Title
22.Feb Frih, Lifetime studies and F4TJB test

Keywords
Machine Shift

Logbook entry

Machine development

(Andersson, Pedrozzi, Streun)

Summary (detailed evaluation will follow):

Test of a new sextupole setting (optics F4TJB calculated by J.Bengtsson, BNL): better
injection efficiency (100% without any optimization!) (due to larger horizontal DA) but lower
lifetime (due to larger 2nd order chromaticity). Tests for various tunes and chroma - quite
promising optics.

Chromaticity measurement from tune vs. RF-freq: 2.2/4.1 (set:4/3).

Energy acceptance: Variation of RF voltage and measurement of Lifetime vs. Synchtrotron
tune. Difficult due to instabilities for low voltage.

Measurement of dispersion at pinhole by variation of RF frequency and measurement of beam
position.

Measurements with pinhole and playing with skew quads: all zero gives 47 micron rms beam
height, visible rotation of beam and 2.8 hrs lifetime. optimum skew quad setting to suppress
rotation (at pinhole location only) gives 42 micron and 3.4 hrs lifetime (for 85mA in 90 buckets
F4TJB). Application crashes due to time outs.

Analysis of lifetime: Measurement while moving slowly in horizontal scraper.

Copying all DBPM software from /work to /prod through the "u.py" backdoor. Reboot of all
DBPM crates from /prod.

Returned to F4T nominal optics afterwards, no time to establish F4TJB thoroug
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6.2 Frequency Analysis of Turn-by-Turn BPM Data

The nonlinear dynamics can be observed by displacing the beam with a fast
kicker (or at injection) and sampling the center-of-charge motion with a BPM on

a turn-by-turn basis. Moreover, with two adjacent BPMs, (x, x') can be estimated
and the variation of the linear invariant computed and monitored on a turn-by-
turn basis.

The N-turn map

:hfl,(T): — jl,(T): :Nkfl: : fl,(T):
N ﬂ{e( )%ﬂ;ﬂle g( ) O g( )

e R € A
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leads to

2
J(N) = Jy+ 92100 T 1011 T 93000 T 1002 T 1020 T O(P3),

2
Jy(N) = Jy,—G1902 + 291929 T O(b3)

where

G+ k)/2 (1+m)/2

Ajim(2y) (2J,)
sin(x[(j— K)v, + (I—m)v,])

(T)ijkl() - (I)ijk,—n[(i—j)vx+(k—l)vy]

IikimN) = cos [Djkim + (j— k) (9, + N2mv,) + (I- m)(¢,+ N2y )],

The Swiss Light Source design is based on:

* direct control of the systematic first order generators by symmetry (second
order achromat) and 9 sextupole families to de-couple the cell phase
advance, i.e. to free working point,

e and indirect control of the second order by minimizing the cross terms

for a robust dynamic aperture. However, since engineering tolerances perturb
the symmetry of the optics, i.e. excite non-structural resonances, the following
strategy was outlined as part of the conceptual design.
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Three first order modes were deliberately excited:

f A, |oxldegl| A, oy [deg]
3vy  |s0x10° | —45.0 - -
Vx—2Vy 13.0x10 0| 90.0 | 50x10° | —90.0
Vet2vy 11.0x10° | 450 |2.0x10° | 45.0

Table 5:

Deliberate Excitation of First Order Sextupolar Modes.
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and simulated by tracking:

1078
J.(N) [gm rad] A FFT3$J, 3
0.14 =-57
0.12 201
0.10 ]
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0.06 1.0
0.04 ]
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0.00 0.0 [ “ , | | (L ; ‘h A , - .
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*1073
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FIGURE 9. Variation of the Linear Invariant (SLS Note 9/97).
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FFT (with interpolation, courtesy of E. Asseo, LEAR) of the linear invariant gave:

f A, |oxldegl| A, oy [deg]
3vy  |s53x10° | —45.1 - -
Vx=2Vy [29x10°| -82.6 |58xi0° | 94.6
Vxt2Vy [1.0x10° | 496 | 1.9x10° | 49.0

Table 6: Estimated First Order Sextupolar Modes from Tracking
(vy— 2Vy appears with the opposite sign due to aliasing).

Conclusion:

The sextupolar modes for a real accelerator can be measured, and hence com-
pensated, i.e. by introducing a correction with the opposite sign. In particular, if
the sextupoles have individual power supplies.
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6.3 Beam Response Matrix Measurements

Global matching of the normalized ring (courtesy of G. Portmann’s “Middle
Layer”): Control of Gradient Errors (horizontal emittance and beam life time):

%2, | D-OF = 7213.002430

LOCO Parameter Fits for Field: QD Model - Measured Response Matrix
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FIGURE 10. Optics Symmetrization of the NSLS X-Ray Ring.
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Lattice calibration: control of linear coupling and vertical dispersion (vertical
emittance).

X2, ! D-OF=4.982313

Measured Response Matrix Model Response Matrix
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FIGURE 11. Lattice Calibration of the NSLS X-Ray Ring (sextupoles zeroed).
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7.0 Conclusions

* While mathematical theorems for stability of nonlinear systems are of limited
use for real systems, they are nevertheless useful as a source of inspiration.

* Robust design, i.e. control of a complex dynamical system, requires rigor-
ous studies of its behavior under various conditions, by computer simula-
tions and/or prototyping and testing. In the case of the system of ordinary
differential equations for single particle dynamics, a comprehensive model
can be implemented.

* Application of Lie series- and map normal form techniques provides an ana-
lytical framework to gain insight into the underlying state-space dynamics.

» Application of signal-processing techniques enables one to monitor the
state-space dynamics of a real system or simulations, and hence to improve
its performance by model driven control; for both design and operations.

» Application of these techniques to the NSLS-II lattice design is starting to
bear fruit.
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